1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
use rand::Rng;

use super::traits::*;

#[derive(PartialEq, Eq, Clone, Copy, Hash, Debug, Serialize, Deserialize)]
#[serde(rename_all = "snake_case")]
pub enum SquareDirection {
    North,
    East,
    South,
    West,
}

impl DirectionTrait for SquareDirection {
    fn variants() -> &'static [SquareDirection] {
        static VARIANTS: &'static [SquareDirection] = &[SquareDirection::North,
                                                        SquareDirection::East,
                                                        SquareDirection::South,
                                                        SquareDirection::West];
        VARIANTS
    }
}

#[derive(PartialEq, Eq, Clone, Copy, Hash, Debug, Serialize, Deserialize)]
pub struct SquareVector {
    pub x: isize,
    pub y: isize,
}

impl VectorTrait for SquareVector {
    type Direction = SquareDirection;

    fn distance(&self, other: &SquareVector) -> usize {
        let xdist = (self.x - other.x).abs();
        let ydist = (self.y - other.y).abs();
        (xdist + ydist) as usize
    }

    fn neighbour(&self, direction: &SquareDirection) -> SquareVector {
        match *direction {
            SquareDirection::North => {
                SquareVector {
                    x: self.x,
                    y: self.y - 1,
                }
            }
            SquareDirection::East => {
                SquareVector {
                    x: self.x + 1,
                    y: self.y,
                }
            }
            SquareDirection::South => {
                SquareVector {
                    x: self.x,
                    y: self.y + 1,
                }
            }
            SquareDirection::West => {
                SquareVector {
                    x: self.x - 1,
                    y: self.y,
                }
            }
        }
    }

    fn neighbours(&self) -> Vec<Self> {
        SquareDirection::variants()
            .into_iter()
            .map(|d| self.neighbour(d))
            .collect()
    }
}

#[derive(PartialEq, Eq, Clone, Copy, Hash, Debug, Serialize, Deserialize)]
pub struct SquareGrid {
    pub width: usize,
    pub height: usize,
}

impl SquareGrid {
    #[allow(dead_code)]
    pub fn new(width: usize, height: usize) -> SquareGrid {
        SquareGrid {
            width: width,
            height: height,
        }
    }
}

impl GridTrait for SquareGrid {
    type Vector = SquareVector;

    fn dimensions(&self) -> Vec<isize> {
        vec![self.width as isize, self.height as isize]
    }

    fn is_within_bounds(&self, v: SquareVector) -> bool {
        v.x >= 0 && v.x < (self.width as isize) && v.y >= 0 && v.y < (self.height as isize)
    }

    fn cells(&self) -> Vec<SquareVector> {
        unimplemented!();
    }

    fn random_cell<R: Rng>(&self, rng: &mut R) -> SquareVector {
        let isize_width = self.width as isize;
        let isize_height = self.height as isize;
        SquareVector {
            x: rng.gen_range(0, isize_width),
            y: rng.gen_range(0, isize_height),
        }
    }
}

#[cfg(test)]
mod tests {
    use quickcheck::{Gen, Arbitrary, quickcheck};
    use super::*;
    use rand::OsRng;

    impl Arbitrary for SquareVector {
        fn arbitrary<G: Gen>(g: &mut G) -> SquareVector {
            let (x, y) = Arbitrary::arbitrary(g);
            return SquareVector { x: x, y: y };
        }
    }

    impl Arbitrary for SquareDirection {
        fn arbitrary<G: Gen>(g: &mut G) -> SquareDirection {
            let i: usize = g.gen_range(0, 4);
            SquareDirection::variants()[i].clone()
        }
    }

    impl Arbitrary for SquareGrid {
        fn arbitrary<G: Gen>(g: &mut G) -> SquareGrid {
            let (mut width, mut height) = Arbitrary::arbitrary(g);
            if width == 0 {
                width = 1;
            }
            if height == 0 {
                height = 1;
            }
            return SquareGrid {
                       width: width,
                       height: height,
                   };
        }
    }

    fn identity_of_indescernibles_prop(v: SquareVector) -> bool {
        v.distance(&v) == 0
    }

    #[test]
    fn identity_of_indescernibles() {
        quickcheck(identity_of_indescernibles_prop as fn(SquareVector) -> bool);
    }

    fn triangle_inequality_prop(u: SquareVector, v: SquareVector, w: SquareVector) -> bool {
        u.distance(&w) <= u.distance(&v) + v.distance(&w)
    }

    #[test]
    fn triangle_inequality() {
        quickcheck(triangle_inequality_prop as
                   fn(SquareVector, SquareVector, SquareVector) -> bool);
    }

    fn symmetry_prop(v: SquareVector, w: SquareVector) -> bool {
        v.distance(&w) == w.distance(&v)
    }

    #[test]
    fn symmetry() {
        quickcheck(symmetry_prop as fn(SquareVector, SquareVector) -> bool);
    }

    fn neighbour_adjacency_prop(v: SquareVector, d: SquareDirection) -> bool {
        v.distance(&v.neighbour(&d)) == 1
    }

    #[test]
    fn neighbour_adjacency() {
        quickcheck(neighbour_adjacency_prop as fn(SquareVector, SquareDirection) -> bool);
    }

    fn random_cells_within_bounds_prop(g: SquareGrid) -> bool {
        let mut osrng = OsRng::new().unwrap();
        for _ in 0..1000 {
            let random_cell = g.random_cell(&mut osrng);
            if !g.is_within_bounds(random_cell) {
                return false;
            }
        }
        return true;
    }

    #[test]
    fn random_cells_within_bounds() {
        quickcheck(random_cells_within_bounds_prop as fn(SquareGrid) -> bool);
    }
}